Package ‘pompom’

February 15, 2021

Type Package
Title Person-Oriented Method and Perturbation on the Model
Version 0.2.1
Maintainer Xiao Yang <vwendy@gmail.com>
Description An implementation of a hybrid method of person-oriented method and perturbation on the model. Pompom is the initials of the two methods. The hybrid method will provide a multivariate intraindividual variability metric (iRAM). The person-oriented method used in this package refers to uSEM (unified structural equation modeling, see Kim et al., 2007, Gates et al., 2010 and Gates et al., 2012 for details). Perturbation on the model was conducted according to impulse response analysis introduced in Lutkepohl (2007).

License GPL-2
Encoding UTF-8
LazyData true
RoxygenNote 7.1.1
Depends R (>= 3.0.0)
Imports lavaan (>= 0.5-23.1097), ggplot2 (>= 2.2.1), reshape2 (>= 1.4.2), qgraph, utils
Suggests knitr, rmarkdown, testthat
VignetteBuilder knitr
NeedsCompilation no
Author Xiao Yang [cre, aut],
Nilam Ram [aut],
Peter Molenaar [aut]
Repository CRAN
Date/Publication 2021-02-15 00:40:02 UTC
R topics documented:

- bootstrap_iRAM_2node
- bootstrap_iRAM_3node
- iRAM
- iRAM_equilibrium
- model_summary
- parse_beta
- plot_integrated_time_profile
- plot_iRAM_dist
- plot_network_graph
- plot_time_profile
- simts_2node
- simts_3node
- true_beta_2node
- true_beta_3node
- uSEM
- usemmodelfit

Index

bootstrap_iRAM_2node

Bootstrapped iRAM (including replications of iRAM and corresponding time profiles) for the bivariate time-series (simts2node)

Description

Bootstrapped iRAM (including replications of iRAM and corresponding time profiles) for the bivariate time-series (simts2node)

Usage

```r
bootstrap_iRAM_2node
```

Format

An object of class `list` of length 5.

Details

Data bootstrapped from the estimated three-node network structure with 200 replications.
bootstrap_iRAM_3node

Examples

```r
each_iRAM_2node$mean # mean of bootstrapped iRAM
each_iRAM_2node$upper # Upper bound of confidence interval of bootstrapped iRAM
each_iRAM_2node$lower # lower bound of confidence interval of bootstrapped iRAM
each_iRAM_2node$time.profile.data # time profiles generated from the bootstrapped beta matrices
each_iRAM_2node$recovery.time.reps # iRAMs generated from the bootstrapped beta matrices
```

bootstrap_iRAM_3node
Bootstrapped iRAM (including replications of iRAM and corresponding time profiles) for the 3-variate time-series (simts)

Description

Bootstrapped iRAM (including replications of iRAM and corresponding time profiles) for the 3-variate time-series (simts)

Usage

```r
bootstrap_iRAM_3node
```

Format

An object of class `list` of length 5.

Details

Data bootstrapped from the estimated three-node network structure with 200 replications.

Examples

```r
bootstrap_iRAM_3node$mean # mean of bootstrapped iRAM
bootstrap_iRAM_3node$upper # Upper bound of confidence interval of bootstrapped iRAM
bootstrap_iRAM_3node$lower # lower bound of confidence interval of bootstrapped iRAM
bootstrap_iRAM_3node$time.profile.data # time profiles generated from the bootstrapped beta matrices
bootstrap_iRAM_3node$recovery.time.reps # iRAMs generated from the bootstrapped beta matrices
```
iRAM

Generate iRAM (impulse response analysis metric) from model fit.

Description

Generate iRAM (impulse response analysis metric) from model fit.

Usage

iRAM(
 model.fit,
 beta,
 var.number,
 lag.order = 1,
 threshold = 0.01,
 boot = FALSE,
 replication = 200,
 steps = 100
)

Arguments

model.fit model fit object generated by lavaan
beta beta matrix for a point estimate
var.number number of variables in the time series
lag.order lag order of the model to be fit
threshold threshold of calculation of recovery time (duration of perturbation), default value is 0.01
boot to bootstrap, default value is FALSE
replication number of replication of bootstrap, default value is 200
steps number of steps of impulse response analysis, default value is 100

Value

iRAM matrix. Rows represent where the orthogonal impulse was given, and columns represent the response. Dimension is var.number by var.number.

References

iRAM_equilibrium

Examples

```r
boot.iRAM <- iRAM(model.fit = useMmodelfit,
                  beta = NULL,
                  var.number = 3,
                  lag.order = 1,
                  threshold = 0.01,
                  boot = TRUE,
                  replication = 200,
                  steps = 100
)
boot.iRAM$mean
```

iRAM_equilibrium
Generate iRAM (impulse response analysis metric) in the equilibrium form.

Description

Generate iRAM (impulse response analysis metric) in the equilibrium form.

Usage

```r
iRAM_equilibrium(beta.matrix, var.number, lag.order)
```

Arguments

- `beta.matrix`: beta matrix for a point estimate
- `var.number`: number of variables in the time series
- `lag.order`: lag order of the model to be fit

Value

A list of equilibria. First numeric number in the variable name indicates where the impulse was given, and the second numeric number indicates the response, e.g., e12 indicates equilibrium of node 2 when node 1 is given an impulse.

Examples

```r
iRAM_evalue <- iRAM_equilibrium(beta.matrix = true_beta_3node,
                                  var.number = 3,
                                  lag.order = 1)
```
model_summary

Provide model summary.

Description

Provide model summary.

Usage

model_summary(model.fit, var.number, lag.order)

Arguments

model.fit model fit object generated by lavaan
var.number number of variables in the time-series
lag.order lag order of model

Details

Model fit criteria: 3 out of 4 rule, meaning 3 out of 4 critea should be satisfied, including CFI and TLI should be greater than 0.95, RMSEA and SRMR should be less than 0.08.

Value

beta matrix estimates
matrix of standard error of beta
matrix of psi estimates
fit statistics CFI
fit statistics TLI
fit statistics RMSEA
fit statistics SRMR
parse_beta

Examples

```r
mdl <- model_summary(model.fit = usemmodelfit,
  var.number = 3,
  lag.order = 1)
mdl$beta
mdl$beta.se
mdl$psi
mdl$cф
mdl$tli
mdl$rmsea
mdl$srmr
```

parse_beta Parse the beta from model fit object

Description

Parse the beta from model fit object

Usage

```r
parse_beta(var.number, model.fit, lag.order, matrix = F)
```

Arguments

- `var.number`: number of variables in the time series
- `model.fit`: model fit object generated by lavaan
- `lag.order`: lag order of the model to be fit
- `matrix`: output beta in matrix format or estimates format, default value is FALSE (as estimates)

Value

beta

Examples

```r
data(usemmodelfit)
beta.matrix <- parse_beta(var.number = 3,
                         model.fit = usemmodelfit,
                         lag.order = 1,
                         matrix = TRUE)
```
plot_integrated_time_profile

Plot the time profiles in the integrated form

Description

Plot the time profiles in the integrated form

Usage

plot_integrated_time_profile(beta.matrix, var.number, lag.order = 1)

Arguments

- beta.matrix: matrix of temporal relations, containing both lag-1 and contemporaneous
- var.number: number of variables in the time series
- lag.order: lag order of the model to be fit

Examples

plot_integrated_time_profile(beta.matrix = true_beta_3node,
var.number = 3,
lag.order = 1)

plot_iRAM_dist

Plot distribution of recovery time based on bootstrapped version of iRAM

Description

Plot distribution of recovery time based on bootstrapped version of iRAM

Usage

plot_iRAM_dist(recovery.time.reps)
plot_network_graph

Arguments
 recovery.time.reps
 bootstrapped version of recovery time

Examples

plot_iRAM_dist(bootstrap_iRAM_3node$recovery.time.reps)

Description
 Plot the network graph

Usage
 plot_network_graph(beta, var.number)

Arguments
 beta matrix of temporal relations, containing both lag-1 and contemporaneous
 var.number number of variables in the time series

Examples

plot_network_graph(beta = true_beta_3node, var.number = 3)
plot_time_profile
Plot time profiles given a time-series generated by impulse response analysis

Description
Plot time profiles given a time-series generated by impulse response analysis

Usage
```r
plot_time_profile(time.series.data, var.number, threshold = 0.01, xupper = 20)
```

Arguments
- `time.series.data`: data of impulse response in long format
- `var.number`: number of variables in the time-series
- `threshold`: threshold of asymptote of equilibrium
- `xupper`: upper limit of x-axis

Examples
```r
plot_time_profile(time.series.data = bootstrap_iRAM_2node$time.profile.data, 
var.number = 2, 
threshold= .01, 
xupper = 20)
```

simts_2node
Simulated bivariate time-series data

Description
Simulated bivariate time-series data

Usage
```
simts_2node
```

Format
An object of class `data.frame` with 200 rows and 2 columns.
Details

Data simulated from a given three-node network structure with 200 measurements. Network structure is shown in the dataset true.beta. Process noise has mean of 0 and SD .1.

Examples

data(simts_2node)

simts_3node Simulated 3-variate time-series data

Description

Simulated 3-variate time-series data

Usage

simts_3node

Format

An object of class data.frame with 100 rows and 3 columns.

Details

Data simulated from a given three-node network structure with 200 measurements. Network structure is shown in the dataset true.beta. Process noise has mean of 0 and SD .1.

Examples

data(simts_3node)
true_beta_2node

The true beta matrix (4 by 4) used in simulation.

Description
The true beta matrix (4 by 4) used in simulation.

Usage
true_beta_2node

Format
An object of class matrix (inherits from array) with 4 rows and 4 columns.

Details
ture_beta_2node <- matrix(c(0,0,0,0, 0,0,0,0, 0.2,-.4,0,-0.25, 0,0.3,-0.2,0), nrow = 4, ncol = 4, byrow = TRUE)

Examples

true_beta_2node

ture_beta_3node

The true beta matrix (6 by 6) used in simulation.

Description
The true beta matrix (6 by 6) used in simulation.

Usage
true_beta_3node

Format
An object of class matrix (inherits from array) with 6 rows and 6 columns.

Details
ture_beta_3node <- matrix(c(0,0,0,0, 0,0,0,0, 0,0,0,0, 0.2,0,0.25,0, 0,0.3,-0.2,0, 0,-0.6,0.3,0,0), nrow = 6, ncol = 6, byrow = TRUE)
uSEM

Examples

ttrue_beta_3node

uSEM
Fit a multivariate time series with uSEM (unified Structural Equation Model).

Description

Fit a multivariate time series with uSEM (unified Structural Equation Model).

Usage

```r
uSEM(var.number, 
   data, 
   lag.order = 1, 
   verbose = FALSE, 
   trim = FALSE)
```

Arguments

- `var.number`: number of variables in the time series
- `data`: time series data, must be in long format
- `lag.order`: lag order of the model to be fit, default value is 1. Note: Higher order (greater than 1) might not run.
- `verbose`: print intermediate model fit (iterations), default value is FALSE
- `trim`: to trim the insignificant betas (just one step, not iterative), default value is FALSE

Details

The purpose of uSEM is to quantify the temporal relations (both contemporaneous and lag-1) between variables. Model specification and estimation can be found in the references.

Value

model fit object generated by lavaan
References

Examples

```r
model.fit <- uSEM(var.number = 3,
                   data = simts_3node,
                   lag.order = 1,
                   verbose = FALSE,
                   trim = FALSE)
model.fit
```

usemmodelfit

Model fit based on simulated time-series by uSEM.

Description

Model fit based on simulated time-series by uSEM.

Usage

`usemmodelfit`

Format

An object of class `lavaan` of length 1.

Examples

```r
data(usemmodelfit)
```
Index

* datasets
 bootstrap_iRAM_2node, 2
 bootstrap_iRAM_3node, 3
 simts_2node, 10
 simts_3node, 11
 true_beta_2node, 12
 true_beta_3node, 12
 usemmodelfit, 14

 bootstrap_iRAM_2node, 2
 bootstrap_iRAM_3node, 3

 iRAM, 4
 iRAM_equilibrium, 5

 model_summary, 6

 parse_beta, 7
 plot_integrated_time_profile, 8
 plot_iRAM_dist, 8
 plot_network_graph, 9
 plot_time_profile, 10

 simts_2node, 10
 simts_3node, 11

 true_beta_2node, 12
 true_beta_3node, 12

 uSEM, 13
 usemmodelfit, 14