refitME: Measurement Error Modelling using MCEM

Fits measurement error models using Monte Carlo Expectation Maximization (MCEM). For specific details on the methodology, see: Greg C. G. Wei & Martin A. Tanner (1990) A Monte Carlo Implementation of the EM Algorithm and the Poor Man's Data Augmentation Algorithms, Journal of the American Statistical Association, 85:411, 699-704 <doi:10.1080/01621459.1990.10474930> For more examples on measurement error modelling using MCEM, see the 'RMarkdown' vignette: "'refitME' R-package tutorial".

Version: 1.2.0
Depends: R (≥ 4.0.0)
Imports: MASS, SemiPar, mgcv, VGAM, VGAMdata, caret, expm, mvtnorm, sandwich, stats, dplyr
Published: 2021-04-26
Author: Jakub Stoklosa ORCID iD [aut, cre], Wenhan Hwang [aut, ctb], David Warton [aut, ctb], Jeremy Vanderwal [ctb] (Used the wt.var() function written by Jeremy VanDerWal)
Maintainer: Jakub Stoklosa <j.stoklosa at>
License: GPL-2
NeedsCompilation: no
Materials: README
CRAN checks: refitME results


Reference manual: refitME.pdf
Package source: refitME_1.2.0.tar.gz
Windows binaries: r-devel:, r-release:, r-oldrel:
macOS binaries: r-release (arm64): refitME_1.2.0.tgz, r-release (x86_64): refitME_1.2.0.tgz, r-oldrel: refitME_1.2.0.tgz


Please use the canonical form to link to this page.