Package 'IceCast'

June 24, 2019

Type Package

Title Apply Statistical Post-Processing to Improve Sea Ice Predictions Version 2.1.0 Author Hannah M. Director, Adrian E. Raftery, and Cecilia M. Bitz Maintainer Hannah M. Director <direch@uw.edu> Description Tools for correcting biases and calibrating sea ice predictions obtained from dynamic ensemble models. Implements and extends Director et al. (2017) <doi:10.1175/JCLI-D-17-0185.1> This package depends on the 'ncdf4' and 'rgeos' R packages. These packages require installing externally from R Unidata's 'NetCDF' library and Geometry Engine -Open Source ('GEOS'). (See the 'rgeos' and 'ncdf4' packages for details.) **License** GPL (≥ 2) Depends R (>= 2.10), rgeos, maptools, sp Imports ncdf4, MASS, raster, methods, utils, Rcpp (>= 0.12.17), coda Suggests geosphere, fields, knitr, rmarkdown, viridis VignetteBuilder knitr **Encoding** UTF-8 LazyData true RoxygenNote 6.1.1 LinkingTo Rcpp, RcppArmadillo NeedsCompilation yes **Repository** CRAN

Date/Publication 2019-06-24 07:40:03 UTC

R topics documented:

all_regions	3
any_intersect	4
bg_water	4
bound_info	5
calc_pars	6

censor	. 6
check_intersect	. 7
clim_9_2005_2007	. 8
clim_9_2008	. 8
cond_prob	. 9
contig_zero	. 9
contour_shift	. 10
conv_to_grid	. 11
create_mapping	. 12
currSecEx	. 14
discrep	. 14
dist_mat	. 15
ecmwf_bin	. 16
extract_coords	. 16
find_trans	. 17
fit_cont_pars	. 17
fit_weights	. 19
full	. 20
gen_cont	. 21
get_area	. 22
get_coords	. 23
get_dist	. 23
get_ind	. 24
get_init_month	. 24
get_map	. 25
get_region	. 26
indiv_poly	. 27
interEx	. 28
interp_new_pts	. 28
inter_start_line	. 29
int_line	. 29
keep_line	. 30
keep_poly	. 30
land	. 31
land_mat	. 32
make_polygons	. 32
mappedPoints	. 33
тарху	. 34
map_curr_1	. 35
merged	. 35
merge_conts	. 36
obsLEx	. 36
obsSep2006_2007	. 37
obsSep2008	. 37
obs_9_2005_2007	. 38
obs_9_2008	. 39
obs_maps	. 39
pars_1	. 40

ppe_9_2005_2007	40
ppe_9_2008	41
predLEx	41
pred_maps	42
prob_map	42
prop_area	43
pt_line_inter	43
quick_run	44
read_bootstrap	45
read_monthly_BS	46
reg_info	47
rm_holes	48
RunMCMC	49
sec_to_interp	50
sipSep2006_2007	51
sipSep2008	52
spatialCollEx	52
to_fit	53
train_ind	53
ts_adj_mu	54
untwist	54
untwist_sec	55
wght_mod	56
y_obs	56
	58

Index

all_regions

Polygon of all regions

Description

All regions except the non-regional ocean converted into a single SpatialPolygons object. Regions are modified from the region masks provided by the National Snow and Ice Data Center (NSIDC)

Usage

all_regions

Format

SpatialPolygons object

References

Region Mask: National Snow and Ice Data Center, 2017: Region mask for the northern hemisphere. http://nsidc.org/data/polar-stereo/tools_masks.html.

3

Examples

```
data(all_regions)
plot(all_regions)
```

any_intersect Check

Check if a line has intersecting segments

Description

Determine if there are any intersecting line segments in a matrix of coordinates representing a line

Usage

any_intersect(line)

Arguments

line

matrix of coordinates corresponding to the line of interest

Value

list where list\$any is a boolean indicating if there are any intersections and list\$val is an index corresponding to the first intersection found

Examples

check_results <- any_intersect(currSecEx)
check_results\$any #true/false
check_results\$val #indices of first intersection found</pre>

bg_water

Polygon of the non-regional ocean

Description

The non-regional ocean converted into a single SpatialPolygons object. The boundaries of the non-regional ocean were defined by modifying the region masks provided by the National Snow and Ice Data Center (NSIDC).

Usage

bg_water

Format

SpatialPolygons object

4

bound_info

References

Region Mask: National Snow and Ice Data Center, 2017: Region mask for the northern hemisphere. http://nsidc.org/data/polar-stereo/tools_masks.html.

Examples

```
data(bg_water)
plot(bg_water)
```

bound_info

Get boundary info

Description

Determine which y values are on the boundaries and what the corresponding bounds of those y values are

Usage

```
bound_info(y_obs, dist, loop)
```

Arguments

y_obs	matrix of observed distances (dimension: number of lines by number of years)
dist	a list of the lengths for the corresponding lines
loop	boolean which if true TRUE indicates that the lines extend outward from a single point forming a circle and if FALSE indicates that the lines are mapped along a fixed contour such as a land boundary

Value

list of 3 matrices each of dimension number of lines by number of years giving the lower bound for hidden x values, the upper bound for hidden x values, and an indicator of whether the value is bounded at all. The values in the list are named ub, 1b, and xUnObs respectively.

calc_pars

Description

Compute parameter estimates for the contour model using MCMC output from fit_cont_pars

Usage

```
calc_pars(res_r, burn_in, w)
```

Arguments

res_r	output of MCMC run from function fit_cont_pars for one region
burn_in	number of iterations to discard as burn-in. This is the number before thinning. Value will be divided by w.
W	integer specifying the thinning used. Samples from every w-th iteration are stored.

Value

List of a list of parameters for each region. Each list contains two elements, muEst and sigmaEst. These which give estimates for the mu and sigma parameters used to generate contours.

Examples

```
## Not run:
y_obs <- y_obs(maps = obs_maps, reg_info)
res <- fit_cont_pars(r = 3, n_iter = 1000, y_obs, reg_info)
calc_pars(res, burn_in = 100, w = res$w)
```

End(Not run)

censor

Truncate simulated line lengths based on a list of bounds

Description

Take in unbounded line lengths (x-values) and truncate them based on provided bounds to create bounded lengths (y-values)

Usage

censor(x, bounds)

check_intersect

Arguments

х	a vector of generated line lengths
bounds	a vector which gives the lengths of the end and breakpoints for each x value

Value

vector of new line lengths

check_intersect Check if line segments intersect

Description

Find if two line segments intersect

Usage

```
check_intersect(a, b, c, d, seq = FALSE)
```

Arguments

а	first coordinate of first line segment
b	second coordinate of first line segment
с	first coordinate of second line segment
d	second coordinate of second line segment
seq	indicator for whether the two line segments are intersecting

Value

boolean indicating if there is an intersection

Examples

```
check_intersect(c(0, 0), c(1, 1), c(2, 2), c(3, 3))
check_intersect(c(0, 0), c(1, 1), c(0.5, 0.5), c(2, 2))
```

clim_9_2005_2007

Description

Proportion of times in the preceding ten years that sea ice concentration of at least 15% was observed in each grid box. Array of dimension year by longitude by latitude. Computed from NASA Boostrap sea ice concentration product.

Usage

data(clim_9_2005_2007)

Format

array

References

Comiso, J., 2017: Bootstrap sea ice concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS. version 3. Boulder, Colorado USA: NASA National Snow and Ice Data Center Distributed Active Archive Center. doi: https://doi.org/10.5067/7Q8HCCWS4I0R

clim_9_2008 *Climatology forecast for 2008.*

Description

Proportion of times in the preceding ten years that sea ice concentration of at least 15% was observed in each grid box. Array of dimension year by longitude by latitude. Computed from NASA Boostrap sea ice concentration product.

Usage

data(clim_9_2008)

Format

array

References

Comiso, J., 2017: Bootstrap sea ice concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS. version 3. Boulder, Colorado USA: NASA National Snow and Ice Data Center Distributed Active Archive Center. doi: https://doi.org/10.5067/7Q8HCCWS4I0R cond_prob

Description

Computes conditional probability of the observed event under some probability model

Usage

cond_prob(obs, mod)

Arguments

obs	matrix with binary observations indicating if sea ice concentration of at least 15\$%\$ was observed. Dimension is lon x lat.
mod	matrix with estimated sea ice probability from a model. Dimension is lon x lat.

contig_zero

Find indices of sequences of contiguous zeros

Description

Identify the indices of sequences of repeated zero values and indices of sequences of non-zero values

Usage

contig_zero(y)

Arguments

y vector to consider

Value

Matrix of three columns where each row gives the first and last index of a sequence of numbers. The third column is a boolean. If TRUE, the indices are for a sequence zeros. If FALSE, the indices are for a sequence non-zero values.

contour_shift

Description

Apply contour-shifting to bias correct a predicted contour using existing mappings.

Usage

```
contour_shift(maps, predicted, bc_year, pred_start_year, reg_info, level,
    dat_type_pred, my_land_mat = land_mat, my_land = land,
    n_train_years = NULL)
```

Arguments

object obtained from the create_mapping function (see details)	
array of predicted values of dimension year x month x longitude x latitude	
year to be bias-corrected	
year prediction array starts in	
a reg_info list (see documentation for reg_info)	
concentration level for which to build contour	
string indicating the format of the prediction: either "gfdl" or "simple" (see details)	
binary matrix specifying land locations	
SpatialPolygons corresponding to the land	
number of years prior to the current year used in fitting the bias correction	

Details

The map parameter is a list of length four that has the form of a list obtained from running the create_mapping function. The values start_year and endYear give the first and last year that were mapped. The variables obs_list and pred_list are lists of arrays with one 3-dimensional array for each region. The first dimension of each array coresponds to the year, the second dimension corresponds to the lines on which the region is being mapped, and the third dimension corresponds to the lines of interest. The first and second dimension are indexed sequentially. The variables of interest. The first and second dimension are indexed sequentially. The variables for the third dimension are for the fixed points' x-coordinates, the fixed points' y-coordinates, the mapped points' x-coordinates, the mapped points' y-coordinates, the length of the mapping vectors in the x-direction, the length of the vectors in the y-direction, and the angles of the mapping vectors. The predicted data array, predicted, should be a single array of dimension: years x longitude (304) x latitude (448). If dat_type_pred = ``simple"}, the values in the array should indicate whether each grid box is categorized to contain ice (1: ice-covered, 0: no ice, NA: la \code{dat_type_pred = ``gfd1" the values in the predicted array correspond to the raw ice concentrations values predicted (including indicators for missing data, land etc.) formatted as in the

CM2.5 Forecast-oriented Low-Ocean Resolution (FLOR) model produced by the National Oceanic and Atmospheric Administration's Geophysical Fluid Dynamics Laboratory and converted to a Polar Stereographic grid (Vecchi et al. 2014; Msadek et al. 2014). Weights for converting to a polar stereographic grid were obtained from the spherical coordinate remapping and interpolation package (SCRIP) (Jones 1997).

Value

SpatialPolygons object of the adjusted region

References

Jones, P.W. "A user's guide for SCRIP: A spherical coordinate remapping and interpolation package." Los Alamos National Laboratory, Los Alamos, NM (1997).

Msadek, R., et al. "Importance of initial conditions in seasonal predictions of Arctic sea ice extent." Geophysical Research Letters 41.14 (2014): 5208-5215.

Vecchi, Gabriel A., et al. "On the seasonal forecasting of regional tropical cyclone activity." Journal of Climate 27.21 (2014): 7994-8016.

Examples

End(Not run)

conv_to_grid

Convert SpatialPolygons *object to a grid*

Description

Convert SpatialPolygons object to a binary grid. Grid boxes whose centers are part of the SpatialPolygons are given value 1 and all other grid boxes are given value 0. Land values are set to NA.

Usage

conv_to_grid(x, my_land_mat = land_mat)

х	SpatialPolygons object
my_land_mat	binary matrix specifying land locations

create_mapping

Description

Finds all the mappings for a set of observations and predictions often over multiple years

Usage

```
create_mapping(start_year, end_year, obs_start_year, pred_start_year,
observed, predicted, reg_info, month, level, dat_type_obs, dat_type_pred,
plotting = FALSE, obs_only = FALSE, pred_only = FALSE, nX = 304,
nY = 448, xmn = -3850, xmx = 3750, ymn = -5350, ymx = 5850)
```

start_year	first year to be mapped
end_year	last year to be mapped
obs_start_year	year in which observation array starts
<pre>pred_start_year</pre>	
	year in which prediction array starts
observed	array of observed values of dimension year x longitude x latitude
predicted	array of predicted values of dimension year x longitude x latitude
reg_info	a reg_info list (see documentation for reg_info)
month	month under consideration
level	concentration level for which to build contour
dat_type_obs	string of either "bootstrap" or "simple" indicating the file type of the observation (see details)
dat_type_pred	string of either "gfdl" or "simple" indicating the file type of the prediction (see details)
plotting	boolean indicatng whether maps should be plotted (defaults to false)
obs_only	indicator to run mapping only for observations
pred_only	indicator to run mapping only for predictions
nX	dimension in the x (defaults to value for Northern Polar stereographic grid: 304)
nY	dimension in the y (defaults to value for Northern Polar stereographic grid: 448)
xmn	min x value (defaults to value for Northern Polar stereographic grid: -3850)
xmx	max x value (defaults to value for Northern Polar stereographic grid: 3750)
ymn	min y value (defaults to value for Northern Polar stereographic grid: -5350)
ymx	max y value (defaults to value for Northern Polar stereographic grid: 5850)

Details

The object maps is obtained from running the create_mapping function. It is a list of four objects. The first two items in the list, start_year and end_year, give the first and last year that were mapped. The second two items, obs_list and pred_list, are lists of arrays with one 3-dimensional array for each region. The first dimension is for the year. The other two dimensions are for the fixed points' y-coordinates, the mapped points' x-coordinates, the mapped points' y-coordinates, the length of the mapping vectors in the x-direction, the length of the vectors in the y-direction, and the angles of the mapping vectors.

For dat_type_obs = "simple" and dat_type_pred = "simple" the values in the observed and predicted arrays are indicators of whether the grid box contains ice (1: ice-covered, 0: no ice, NA: land). If datTypePred = "gfdl" or dat_type_obs = "bootstrap", the values in the observed and predicted arrays correspond to the raw ice concentrations values observed or predicted (including indicators for missing data, land etc.). If datTypePred = "gfdl", the predictions are formatted as in the CM2.5 Forecast-oriented Low-Ocean Resolution (FLOR) model produced by the National Oceanic and Atmospheric Administration's Geophysical Fluid Dynamics Laboratory and converted to a Polar Stereographic grid (Vecchi et al. 2014; Msadek et al. 2014). If datTypeObs = "bootstrap" the array values are assumed to be from the monthly sea ice concentration obtained from the National Aeronautics and Space Administration (NASA) satellites Nimbus-7 SMMR and DMSP SSM/I-SSMIS and processed by the bootstrap algorithm. Weights for converting to a polar stereographic grid were obtained from the spherical coordinate remapping and interpolation package (SCRIP) (Jones 1997).

Value

map object (see details)

References

Comiso, J., 2017: Bootstrap sea ice concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS. version 3. Boulder, Colorado USA: NASA National Snow and Ice Data Center Distributed Active Archive Center. doi: https://doi.org/10.5067/7Q8HCCWS4I0R

CM2.5 Forecast-oriented Low-Ocean Resolution (FLOR) model: Vecchi, Gabriel A., et al. "On the seasonal forecasting of regional tropical cyclone activity." Journal of Climate 27.21 (2014): 7994-8016.

Msadek, R., et al. "Importance of initial conditions in seasonal predictions of Arctic sea ice extent." Geophysical Research Letters 41.14 (2014): 5208-5215.

National Center for Atmospheric Research, 2017: Earth system grid at NCAR. https://www.earthsystemgrid.org/home.html.

Jones, P.W. "A user's guide for SCRIP: A spherical coordinate remapping and interpolation package." Los Alamos National Laboratory, Los Alamos, NM (1997).

Examples

discrep

currSecEx

Coordinates of a line segment with self-intersections

Description

Example of a line segment with self-intersections. We will use it to demonstrate the untwistSec function.

Usage

currSecEx

Format

n x 2 matrix of coordiantes

Examples

```
data(currSecEx)
head(currSecEx)
```

discrep

Discrepancy maps for September 1993-2007 (lead time 2.5-months)

Description

The object discrep is obtained from running the createMapping function for September 1993-2007. The predictions used are from European Center for Medium-Range Weather Forecasts (ECMWF) at a 2.5-month lead time and are converted to a Polar Stereographic grid. Model output is available from the Sea Ice Prediction Network Predicatability Portal or the Copernicus Climate Change Service data store. The observations used are from the monthly sea ice concentration obtained from the National Aeronautics and Space Administration (NASA) satellites Nimbus-7 SMMR and DMSP SSM/I-SSMIS and processed by the bootstrap algorithm. The results are distributed by the National Snow and Ice Data Center (Comiso 2017).

Usage

discrep

Format

Object obtained from the createMapping function (see details)

dist_mat

Details

The object discrep is obtained from running the createMapping function. It is a list of four objects where startYear and endYear give the first year and last year that were mapped. The variables obsList and predList are lists of arrays with one 3-dimensional array for each region. The first dimension is for the year. The other two dimensions are for the fixed points' y-coordinates, the mapped points' x-coordinates, the mapped points' y-coordinates, the length of the mapping vectors in the x-direction, the length of the vectors in the y-direction, and the angles of the mapping vectors.

References

Comiso, J., 2017: Bootstrap sea ice concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS. version 3. Boulder, Colorado USA: NASA National Snow and Ice Data Center Distributed Active Archive Center. doi: https://doi.org/10.5067/7Q8HCCWS4I0R

Copernicus Climate Change Service (2019). Description of the c3s seasonal multi-system.https: //confluence.ecmwf.int/display/COPSRV/Description+of+the+C3S+seasonal+multi-system

Sea Ice Prediction Network (2019). Sea ice prediction network predictability portal. https://atmos.uw.edu/sipn/.

Examples

data(discrep)
names(discrep)

dist_mat

Compute 'distances' among \$n\$ lines

Description

Creates a matrix specifying how difference indices are among an ordered set of indices. For lines with indices i and j, the 'distance' computed is |i - j|. Results are used to define covariance.

Usage

```
dist_mat(n_lines)
```

Arguments

n_lines number of lines in matrix

Value

Matrix of 'distances' among the indices

ecmwf_bin

Description

The object ensemble_bin is a binary array indicating if at least half of the ensemble members have sea ice concentrations of at least 15% from September 1993-2018. The predictions are from the European Center for Medium-Range Weather Forecasts (ECMWF) ensemble at a 2.5-month lead time. They have been converted to a Polar stereographic grid.

Usage

ecmwf_bin

Format

array of dimension of 26 x 304 x 448 (corresponding to year x longitude x 448 latitude)

References

Copernicus Climate Change Service (2019). Description of the c3s seasonal multi-system. https://confluence.ecmwf.int/display/COPSRV/Description+of+the+C3S+seasonal+multi-system

Sea Ice Prediction Network (2019). Sea ice prediction network predictability portal. https://atmos.uw.edu/sipn/.

Examples

data(ecmwf_bin)

extract_coords Function to extract coordinates.

Description

Function to extract coordinates from a SpatialLines object. If there are breaks in the line, this function connects the closest points to create one line. Note: This differs from the function getCoords in that the ordering of the points is considered.

Usage

extract_coords(x)

Arguments

х

SpatialLines or SpatialPolygons object

find_trans

Value

n x 2 matrix of coordinates

Examples

```
coords <- extract_coords(reg_info$regions[[3]])
par(mfrow = c(1, 2))
plot(reg_info$regions[[3]], main = "Polygon Object")
plot(coords, type = "p", main = "Coordinates", pch = 20)</pre>
```

find_trans

Find transition points (points at the start/end of polygons)

Description

Find transition points (points at the start/end of polygons)

Usage

find_trans(pts, r, reg_info, close = 12.5)

Arguments

to 12.5
t

fit_cont_pars	Sets up MCMC to fit the parameters of the contour Model in R, then
	runs the sampler in C++

Description

Sets up MCMC to fit the parameters of the contour Model in R, then runs the sampler in C++

Usage

```
fit_cont_pars(r, n_iter, y_obs, reg_info, dists = NULL,
  sigma_min = 0.01, sigma0_lb = NULL, sigma0_ub = NULL,
  xU_prop_sd_def = 0.03, mu_ini = NULL, mu0 = NULL, lambda0 = NULL,
  sigma_ini = NULL, sigma_prop_cov = NULL, sigma_sp = 25,
  rho_ini = 0.5, rho0_lb = 0, rho0_ub = 0.99, rho_prop_sd = 0.01,
  w = 20)
```

r	number indicating which region in the reg_info list is being considered
n_iter	number of iterations to run the MCMC, must be a multiple of w
y_obs	output of y_obs function. This is a list of matrices, one per region, giving the observed y values. Each row corresponds to the lines and each column corresponds to a training year
reg_info	a reg_info list (see documentation for reg_info)
dists	symmetric matrix of the same dimension as the number of lines being used, specifying distances among indices. Defaults to NULL, which means atrix will be computed by the dist_mat function
sigma_min	minimum value for all σ parameters. Typically close to but not exactly zero (defaults to 0.01). Not used if sigma@_lb is set to NULL
sigma0_lb	vector of the same length as the number of lines which specifies the lower bound of the uniform prior for each sigma value. Defaults to NULL, meaning sigma0_lb is set to be a vector with all values set to sigmaMin
sigma0_ub	vector of the same length as the number of lines which specifies the upper bound of the uniform prior for each sigma value. Defaults to NULL
xU_prop_sd_def	Standard deviation for proposals for xU when xU can take on an infinite set of values
mu_ini	vector of the same length as the number of lines which specifies the values from which each element of μ will be initialized in the MCMC. Defaults to NULL, meaning μ will be initialized with the mean of the observed y's
muØ	vector of the same length as the number of lines which specifies the prior mean for μ . Defaults to NULL, meaning each element in mu0 will be set to be in the middle of its corresponding line
lambda0	matrix of the same dimension as the number of lines which specifices the prior covariance matrix for μ . Defaults to NULL, which gives a diagonal matrix with diagonal elements corresponding to the variance that would be required for 80 values of the corresponding line if the data were normally distributed.
sigma_ini	vector of the same length as the number of lines which specifies the values from which each element in Σ will be initialized from. Defaults to NULL, meaning each element of Σ will be initialized with the observed standard deviation of its corresponding y's, bounded by sigma0_lb and sigma0_ub.
sigma_prop_cov	covariance matrix of the same length as the number of lines that is used in sampling Σ values. Defaults to NULL, meaning a diagonal matrix is used. The elements on the diagonal of this matrix are generally set to have value sigma_ini/20 unless the corresponding observed y's have zero variance, in which case these values are set to 0.1.
sigma_sp	integer specifying how many elements in the Σ matrix should be sampled to- gether in the MCMC. Defaults to 25.
rho_ini	double between 0 and 1 from which the value of rho will be initialized. Defaults to 0.5
rho0_lb	double between 0 and 1 which gives the lower bound of the uniform prior for rho. Detauls to 0.

fit_weights

rho0_ub	double between 0 and 1 which gives the upper bound of the uniform prior for rho. Defaults to 1.
rho_prop_sd	standard deviation for the normal proposal distribution used when proposing value for rho in the sampler. Defaults to 0.01
W	integer specifying how many samples of the parameters will be maintained. Samples from every w-th iteration is stored.

Value

List that gives the values of the MCMC chain for xU, mu, sigma and rho along with indicators of acceptance on each iteration: xURate, sigmaRate, and rhoRate. Background information is also outputted including the upper and lower bounds for unobserved x's (xU_1b, xU_ub), vectors giving the first and last indices of each grouping in sampling Σ (sigma_ind_1,sigma_ind_2), the distance matrix (dists), and the integer specifying how many samples of the parameters will be maintained W

Examples

```
## Not run:
y_obs <- y_obs(maps = obs_maps, reg_info)</pre>
res <- fit_cont_pars(r = 3, n_iter = 1000, y_obs, reg_info)</pre>
```

End(Not run)

fit_weights Compute weighting between two models

Description

Compute weighting between two models based on accuracy in predicting a set of observations. Computation is via the Expectation-Maximization algorithm.

Usage

```
fit_weights(mod1, mod2, obs, prop_area, w_ini = 0.5, z_ini = 0.5,
 eps = 0.01)
```

mod1	array with estimated sea ice probability from model 1. Dimensions are number of training years x lon x lat.
mod2	array with estimated sea ice probability from model 2. Dimensions are number of training years x lon x lat.
obs	array with observations of sea ice presence (1) and absence (0) . Dimensions are number of training years x lon x lat.
prop_area	matrix that gives the proportion of area in each grid box. Should sum to 1. Dimensions are lon x lat.

w_ini	initial value of all w, defaults to 0.5.
z_ini	initial value of all z, defaults to 0.5.
eps	tolerance for EM algorithm to reach convergence, defaults to 0.01.

Value

value between 0 and 1 giving the weight on the first model

Examples

```
## Not run:
weight <- fit_weights(mod1 = clim_9_2005_2007, mod2 = ppe_9_2005_2007,
obs = obs_9_2005_2007, prop_area = prop_area)
```

End(Not run)

full

Sample collection of completely ice-filled regions

Description

Example of a collection of several completely ice-filled regions stored as a single SpatialPolygons object

Usage

data(full)

Format

An object of class SpatialPolygons of length 1.

Examples

data(full)

gen_cont

Description

Generate the contours for a particular region given the model prediction

Usage

```
gen_cont(r, pars_r, reg_info, n_gen = NULL, map_pred_r = NULL,
stat_only = FALSE, mean_only = FALSE, eff_zero = 12.5,
stat_only_trend = TRUE)
```

Arguments

r	integer indicating the number of the region in which the contours should be generated
pars_r	List of parameter information for region r. The list should contain two elements, muEst and sigmaEst, which give estimates for the μ and Σ parameters used in generating contours. Typically obtained from the calc_pars function
reg_info	a reg_info list (see documentation for reg_info)
n_gen	integer specifying the number of contours to be generated, must be at least 2
<pre>map_pred_r</pre>	output of get_map function applied to SpatialPolygons object corresponding to an initial forecast (typically a bias-corrected dynamic ensemble forecast)
stat_only	boolean indicating that forecast is purely statistical (no dynamic ensemble model forecast considered)
mean_only	boolean indicating that only the mean contour will be computed rather than dis- tribution
eff_zero	how close a generated vector needs to be to zero to be counted as a zero, defaults to 12.5
<pre>stat_only_trend</pre>	
	boolean indicating if a trend adjustment should be applied when stat_only = TRUE. Defaults to true

Examples

#hybrid probabilistic, region 1, 2 generated contours

get_area

End(Not run)

get_area

Calculate geodesic area

Description

Caclulate the geodesic areas of SpatialPolygons object on the Nothern Hemisphere Polar Stereographic grid projection

Usage

get_area(poly, byid = FALSE)

Arguments

poly	SpatialPolygons object for which to calculate area
byid	boolean indicating whether areas should be calculated for each polygon individ- ually or for the whole object together

Details

Area calculations are for the Polar stereographic grid with major axis of 6378273m and ellipsoid flattening of 1/298.2794111.

Value

Area of polygon (or vector of areas if byid is set to TRUE)

References

Information on Polar Stereographic North projection: https://nsidc.org/data/polar-stereo/ ps_grids.html

Examples

```
get_area(reg_info$regions[[1]])
get_area(land, byid = TRUE)
```

22

get_coords

Description

Get coordinates from a spatial object of lines and points. There is no ordering of points returned. Note: This differs from extract_coords in that the ordering of the points is NOT considered.

Usage

```
get_coords(my_points)
```

Arguments

my_points spatial object of type SpatialCollections, SpatialPoints, or SpatialLines

Value

n x 2 matrix of coordinates

Examples

```
#Load sample line
ex_line <- as(rm_holes(bg_water[2]), "SpatialLines")
get_coords(ex_line)
```

get_dist

Find euclidean distance

Description

Finds the euclidean distance between two points (ignoring projection)

Usage

```
get_dist(p1, p2)
```

Arguments

p1	vector giving the x and y coordinate pair for the first point
p2	vector giving the x and y coordinate pair for the second point

Value

distance value

Examples

get_dist(c(1, 2), c(3, 4))

get_ind	Find indices in matrix	
---------	------------------------	--

Description

Function to find to which matrix indices coordinates correspond (on a 304 x 448 grid)

Usage

get_ind(coords, xmn = -3850, ymn = -5350)

Arguments

coords	coordinates of interest
xmn	min x (defaults to value for Northern Polar stereographic grid: -3850)
ymn	min y (defaults to value for Northern Polar stereographic grid: -5350)

Value

n x 2 matrix of coordinates on a 304 x 448 grid

Examples

dat <- matrix(nrow = 2, ncol = 2, data = c(-2000, 0, 300, 1000))
get_ind(dat)</pre>

get_init_month Get initialization month

Description

Determine initialization month based on month being forecast and lag. Considers lags up to 11 months in advance.

Usage

get_init_month(month, lag)

Arguments

month	forecast month (integer from 1 to 12 corresponding to month of year)
lag	months in advance prediction is being made (integer from 1 to 11).

24

get_map

Details

Note that this calculation assumes that the prediction for a month is its on first day. This differs from the labeling used in Director et al. (2017) which rounds up to the nearest full month.

Value

integer corresponding to the initialization month

Examples

```
init_month <- get_init_month(month = 10, lag = 4)
init_month</pre>
```

get_map

Map one observation or prediction

Description

Find the mapping vectors for one observation or prediction.

Usage

```
get_map(ice, reg_info, plotting = FALSE, main = "", my_land = land)
```

Arguments

ice	SpatialPolygons object corresponding to the region of ice
reg_info	reg_info list (see reg_info documentation)
plotting	boolean indicating if map should be plotted
main	string specifying the name for the plot
my_land	SpatialPolygons object corresponding to the land

Value

List of the length of the number of regions. Each item in the list is a matrix. Each row of each matrix corresponds to a point in the region's line. The six columns give the fixed point's x-coordinate, the fixed point's y-coordinate, the mapped point's x-coordinate, the mapped point's y-coordinate, the length of the mapping fvectors in the x-direction, and the length of the vectors in the y-direction.

Examples

End(Not run)

```
get_region
```

Description

Takes in a matrix and returns a SpatialPolygon object representing regions fitting some criteria. Typically these regions are either where the sea ice concentration is above a certain level or where there is land.

Usage

```
get_region(dat, dat_type, level = NULL, my_land_mat = land_mat,
my_all_regions = all_regions, use_all = FALSE, land_ind = FALSE,
xmn = -3850, xmx = 3750, ymn = -5350, ymx = 5850)
```

Arguments

dat	matrix of one of the allowed data types ("gfdl", "bootstrap", or "simple) (see details)
dat_type	string indicating the format of the data: either "gfdl", "bootstrap", or "simple" (see details)
level	concentration level of interest
my_land_mat	binary matrix specifying land locations
<pre>my_all_regions</pre>	SpatialPolygons object specifying region that will be considered
use_all	boolean, if true indicates to use the full area (overrides land_mat)
land_ind	boolean, if true indicates that the region of interest is the land
xmn	min x dimension (defaults to value for polar stereographic grid: -3850)
xmx	max x dimension (defaults to value for polar stereographic grid: 3750)
ymn	min y dimension (defaults to value for polar stereographic grid: -5350)
ymx	max y dimension (defaults to value for polar stereographic grix: 5850)

Details

For datType = "simple" the values in the dat matrix are indicators of whether the grid box contains ice (1: ice-covered, 0: no ice, NA: land). If datType = "gfdl" or datType = "bootstrap", the values in the matrix correspond to the raw ice concentrations values observed or predicted (including indicators for missing data, land etc.). If datType = "gfdl", the predictions are formatted as in the CM2.5 Forecast-oriented Low-Ocean Resolution (FLOR) model produced by the National Oceanic and Atmospheric Administration's Geophysical Fluid Dynamics Laboratory converted to a Polar Stereographic grid (Vecchi et al. 2014; Msadek et al. 2014). If datType = "bootstrap" the array values are formatted the same as the ice concentration values obtained from the National Aeronautics and Space Administration (NASA) satellites Nimbus-7 SMMR and DMSP SSM/I-SSMIS and processed by the bootstrap algorithm.

indiv_poly

Value

region of interest as a SpatialPolygons object

References

Bootstrap sea ice concentration: Comiso, J., 2017: Bootstrap sea ice concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS. version 3. Boulder, Colorado USA: NASA National Snow and Ice Data Center Distributed Active Archive Center

CM2.5 Forecast-oriented Low-Ocean Resolution (FLOR) model: Vecchi, Gabriel A., et al. "On the seasonal forecasting of regional tropical cyclone activity." Journal of Climate 27.21 (2014): 7994-8016.

Msadek, R., et al. "Importance of initial conditions in seasonal predictions of Arctic sea ice extent." Geophysical Research Letters 41.14 (2014): 5208-5215.

Examples

```
## Not run:
obs_example <- get_region(dat = obsFeb2012, dat_type = "bootstrap", level = 15)
plot(land, col = 'grey', border = FALSE)
plot(obs_example, col = "lightblue", add = TRUE)
```

End(Not run)

indiv_poly Generate an individual polygon from a set of points

Description

Generate an individual polygon from a set of points

Usage

```
indiv_poly(pts, r, loop_r, reg_info, t1 = NULL, t2 = NULL,
    poly_name = "unspecified")
```

pts	matrix with two columns giving the coordinates of the generated points
r	integer specifying the region
loop_r	boolean indicating whether the points are going in a loop
reg_info	a reg_info list (see documentation for reg_info)
t1	index of first transition point under consideration in pts matrix, NULL if $loop_r = TRUE$
t2	index of second transition point under consideration in pts matrix, NULL if loop_r == TRUE
poly_name	string giving name of polygon

interEx

Description

Example of a line that contains self-intersections. We will use it to demonstrate the functions that address these intersections.

Usage

interEx

Format

n x 2 matrix of coordinates

Examples

data(interEx)
plot(interEx)

interp_new_pts Interpolate along region boundaries

Description

Interpolate contour points that are very close or on the region boundaries.

Usage

```
interp_new_pts(r, new_pts, reg_info, end = TRUE, close = 12.5)
```

r	integer indicating for which region the contours are being generated
new_pts	coordinates of the contour
reg_info	a reg_info list (see documentation for reg_info)
end	indicator determining if the points are being interpolated on the ending coordinates or the starting coordinates. Defaults to TRUE.
close	how close a point must be to the line to count as being on it, defaults to 12.5

inter_start_line Add points where line connecting point sequence crosses start_line

Description

Add points where line connecting point sequence crosses start_line

Usage

```
inter_start_line(r, pts, reg_info)
```

Arguments

r	region number
pts	matrix with two columns giving coordinates of the points
reg_info	a reg_info list (see documentation for reg_info)

int_line Space points along a line

Description

The function evenly spaces the number of points that are on one line, pred_1, on a different line, obs_1

Usage

int_line(pred_1, obs_1, plotting = FALSE)

Arguments

pred_l	predicted line (n1 x 2 matrix of coordinates)
obs_l	predicted line (n2 x 2 matrix of coordinates)
plotting	boolean indicating whether maps should be plotted

Value

n x 2 matrix of evenly-spaced coordinates

Examples

line_space <- int_line(predLEx, obsLEx, plotting = TRUE)</pre>

keep_line

Description

Keep only SpatialLines from a spatial object.

Usage

```
keep_line(my_poly)
```

Arguments

my_poly

SpatialCollections, SpatialPolygons, SpatialPoints, or SpatialLines object

Value

SpatialPolygons object

Examples

```
par(mfrow = c(1, 2))
plot(spatialCollEx, col = "blue", main = "Spatial Collections Object")
line_only <- keep_line(spatialCollEx)
plot(line_only, col = "blue", main = "Spatial Line Only")</pre>
```

```
keep_poly
```

Keep only spatial polygons

Description

Keep only SpatialPolygons from a spatial object.

Usage

```
keep_poly(my_poly)
```

Arguments

my_poly SpatialCollections, SpatialPolygons, SpatialPoints, or SpatialLines object

Value

SpatialPolygons object

land

Examples

```
par(mfrow = c(1, 2))
plot(spatialCollEx, col = "blue", main = "Spatial Collections Object")
poly_only <- keep_poly(spatialCollEx)
plot(poly_only, col = "blue", main = "Spatial Polygon Only")</pre>
```

land

Polygon of land

Description

Land mask as a single SpatialPolygons object. The land mask was obtained from the CM2.5 Forecast-oriented Low-Ocean Resolution (FLOR) model produced by the National Oceanic and Atmospheric Administration's Geophysical Fluid Dynamics Laboratory converted to a Polar Stereographic grid. (Vecchi et al. 2014; Msadek et al. 2014). Weights for converting to a polar stereograhic grid were obtained from the spherical coordinate remapping and interpolation package (SCRIP) (Jones 1997).

Usage

land

Format

SpatialPolygons object

References

Vecchi, Gabriel A., et al. "On the seasonal forecasting of regional tropical cyclone activity." Journal of Climate 27.21 (2014): 7994-8016.

Msadek, R., et al. "Importance of initial conditions in seasonal predictions of Arctic sea ice extent." Geophysical Research Letters 41.14 (2014): 5208-5215.

Jones, P.W. "A user's guide for SCRIP: A spherical coordinate remapping and interpolation package." Los Alamos National Laboratory, Los Alamos, NM (1997).

Region Mask: National Snow and Ice Data Center, 2017: Region mask for the northern hemisphere. http://nsidc.org/data/polar-stereo/tools_masks.html.

Examples

data(land)
plot(land)

land_mat

Description

Binary matrix of dimension 304 x 448 with value for 1 for land grid boxes and 0 otherwise. Data are on a north Polar Stereographic grid with the land mask simplified to match model output from the CM2.5 Forecast-oriented Low-Ocean Resolution (FLOR) model produced by the National Oceanic and Atmospheric Administration's Geophysical Fluid Dynamics Laboratory converted to a Polar Stereographic grid (Vecchi et al. 2014; Msadek et al. 2014). Weights for converting to a polar stereographic grid were obtained from the spherical coordinate remapping and interpolation package (SCRIP) (Jones 1997).

Usage

land_mat

Format

304 x 448 matix

References

Vecchi, Gabriel A., et al. "On the seasonal forecasting of regional tropical cyclone activity." Journal of Climate 27.21 (2014): 7994-8016.

Msadek, R., et al. "Importance of initial conditions in seasonal predictions of Arctic sea ice extent." Geophysical Research Letters 41.14 (2014): 5208-5215.

National Center for Atmospheric Research, 2017: Earth system grid at NCAR. https://www.earthsystemgrid.org/home.html.

Examples

```
data(land_mat)
image(land_mat, xaxt = "n", yaxt = "n")
```

make_polygons Create polygon from mapped points

Description

Create a new polygon from the coordinates of mapped points

Usage

```
make_polygons(r, my_end, poly_name = "unspecified", loop_r)
```

mappedPoints

Arguments

r	integer specifying the region of current interest
my_end	n x 2 list of mapped points, i.e. the points to which the polygon should extend
poly_name	character string to name the new polygon (defaults to "unspecified")
loop_r	boolean indicating whether the points are going in a loop

Value

SpatialPolygons object created from the mapped points

Examples

```
new_poly <- make_polygons(r = 5, my_end = mappedPoints, loop_r = FALSE)
plot(new_poly)</pre>
```

mappedPoints

Example of mapped points

Description

Example of a set of mapped points organized as an $n \ge 2$ matrix of coordinates. This is used to demonstrate the makePolygons function.

Usage

mappedPoints

Format

matrix of 1027 x 2

Examples

```
data(mappedPoints)
head(mappedPoints)
plot(mappedPoints, type = "1")
```

mapxy

Description

Get corresponding latitude and longitude values for coordinates on a Polar Stereographic North projection grid

Usage

```
mapxy(X, Y, sgn = 1, slat = 70, re = 6378.273, e2 = 0.006693883,
  degrees = TRUE)
```

Arguments

Х	Polar Stereographic X Coordinate (km)
Y	Polar Stereographic Y Coordinate (km)
sgn	indicator for Northern hemisphere (defaults to 1)
slat	standard latitude (defaults to 70)
re	Earth's radius (defaults to 6378.273)
e2	eccentricity squared (defaults to 0.006693883)
degrees	boolean indicating whether result should be returned in degrees or radians

Value

list with elements coords\$aLat, the geodetic latitude (degrees, +90 to -90), and coords\$aLon, the geodetic longitude (degrees, -180 to 180)

References

The equations for this calculation are from Snyder, J. P., 1982, Map Projections Used by the U.S. Geological Survey, Geological Survey Bulletin 1532, U.S. Government Printing Office. See JPL Technical Memorandum 3349-85-101 for further details.

Examples

```
new <- mapxy(100, 300)
new$alat
new$alon</pre>
```

map_curr_1

Description

Example output from the get_map function for the Central Arctic region.

Usage

```
data(map_curr_1)
```

Format

An object of class matrix with 130 rows and 6 columns.

Examples

data(map_curr_1)

merged

Sample list of contours

Description

Example list of ten contours in the form of SpatialPolygons objects

Usage

data(merged)

Format

An object of class list of length 10.

Examples

data(merged)

merge_conts

Description

Merge generated contours for all regions together

Usage

```
merge_conts(conts, full)
```

Arguments

conts	list of contours organized as a list of regions by a list of years by a list of samples
full	SpatialPolygons object for area to be included in all generated contours

Value

Returns a list of contours organized as a list of years by a list of samples

obsLEx

Coordinates of an observed line segment

Description

Example of the coordinates for an observed line segment. We will use it to demonstrate the intLine function.

Usage

obsLEx

Format

n x 2 matrix of coordinates

Examples

data(obsLEx)
head(obsLEx)

obsSep2006_2007

Description

The object observed is an array obtained from the function readMonthlyBSfor startYear = 2006 and endYear = 2007. It gives the observed sea ice concentrations arranged in an array of dimension of year x month x lon x lat. The observations are from the monthly sea ice concentration obtained from the National Aeronautics and Space Administration (NASA) satellites Nimbus-7 SMMR and DMSP SSM/I-SSMIS and processed by the bootstrap algorithm. The results are distributed by the National Snow and Ice Data Center (Comiso 2017).

Usage

obsSep2006_2007

Format

array of dimension of 2 x 12 x 304 x 448 (year x month x longitude x latitude)

References

Comiso, J., 2017: Bootstrap sea ice concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS. version 3. Boulder, Colorado USA: NASA National Snow and Ice Data Center Distributed Active Archive Center

Examples

data(obsSep2006_2007)
dim(obsSep2006_2007)

obsSep2008

Observed sea ice September 2008

Description

The object observed is an binary matrix of dimension lon x lat that indicates whether sea ice concentration was at least 15%. The observations are from the monthly sea ice concentration obtained from the National Aeronautics and Space Administration (NASA) satellites Nimbus-7 SMMR and DMSP SSM/I-SSMIS and processed by the bootstrap algorithm. The results are distributed by the National Snow and Ice Data Center (Comiso 2017).

Usage

obsSep2008

Format

array of dimension of 2 years x 12 months x longitude x latitude

References

Comiso, J., 2017: Bootstrap sea ice concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS. version 3. Boulder, Colorado USA: NASA National Snow and Ice Data Center Distributed Active Archive Center. doi: https://doi.org/10.5067/7Q8HCCWS4I0R

Examples

data(obsSep2008)
dim(obsSep2008)

obs_9_2005_2007 Observed sea ice for September 2005-2007

Description

Array of dimension year x longitude by latitude. Binary indicate of whether sea ice concentration of at least 15% was observed. Computed from NASA Boostrap sea ice concentration product (Comiso 2017).

Usage

```
data(obs_9_2005_2007)
```

Format

array

References

Comiso, J., 2017: Bootstrap sea ice concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS. version 3. Boulder, Colorado USA: NASA National Snow and Ice Data Center Distributed Active Archive Center. doi: https://doi.org/10.5067/7Q8HCCWS4I0R obs_9_2008

Description

Array of dimension longitude by latitude. Binary indicate of whether sea ice concentration of at least 15% was observed. Computed from NASA Boostrap sea ice concentration product (Comiso 2017).

Usage

data(obs_9_2008)

Format

array

References

Comiso, J., 2017: Bootstrap sea ice concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS. version 3. Boulder, Colorado USA: NASA National Snow and Ice Data Center Distributed Active Archive Center. doi: https://doi.org/10.5067/7Q8HCCWS4I0R

obs_maps

Output from create_mapping function

Description

Sample output from the create_mapping function for observations from September 1993-2007. It is a list of four objects. The first two items in the list, start_year and end_year, give the first and last year that were mapped. The second two items, obs_list and pred_list, are lists of arrays with one 3-dimensional array for each region. The first dimension is for the year. The other two dimensions are for the fixed points' y-coordinates, the mapped points' x-coordinates, the mapped points' y-coordinates, the length of the mapping vectors in the x-direction, the length of the vectors in the y-direction, and the angles of the mapping vectors.

Usage

data(obs_maps)

Format

An object of class list of length 4.

Examples

data(obs_maps)

pars_1

Description

Example list with two elements, mu_est and sigma_est, which give the mean and covariance from which an example contour can be generated

Usage

data(pars_1)

Format

An object of class list of length 2.

Examples

data(pars_1)

ppe_9_2005_2007 Post-processed ensemble forecast for 2005-2007

Description

Array of dimension year by longitude by latitude that gives example forecasts post-processed with a contour model. The initial forecasts are from the European Center for Medium-Range Weather Forecasts (ECMWF) ensemble at a 2.5-month lead time. They have been converted to a Polar stereographic grid. Model output is available from the Sea Ice Prediction Network Predicatability Portal or the Copernicus Climate Change Service data store.

Usage

data(ppe_9_2005_2007)

Format

array

References

Copernicus Climate Change Service (2019). Description of the c3s seasonal multi-system. https: //confluence.ecmwf.int/display/COPSRV/Description+of+the+C3S+seasonal+multi-system

Sea Ice Prediction Network (2019). Sea ice prediction network predictability portal. https://atmos.uw.edu/sipn/.

ppe_9_2008

Description

Array of dimension year by longitude by latitude. The initial forecasts are from the European Center for Medium-Range Weather Forecasts (ECMWF) ensemble at a 2.5-month lead time. They have been converted to a Polar stereographic grid. Model output is available from the Sea Ice Prediction Network Predicatability Portal or the Copernicus Climate Change Service data store.

Usage

data(ppe_9_2008)

Format

array

References

Copernicus Climate Change Service (2019). Description of the c3s seasonal multi-system. https: //confluence.ecmwf.int/display/COPSRV/Description+of+the+C3S+seasonal+multi-system

Sea Ice Prediction Network (2019). Sea ice prediction network predictability portal. https://atmos.uw.edu/sipn/.

predLEx

Coordinates of a predicted line segment

Description

Example of the coordinates for a predicted line segment. We will use it to demonstrate the intLine function.

Usage

predLEx

Format

n x 2 matrix of coordinates

Examples

data(predLEx)
head(predLEx)

pred_maps

Description

Output of the create_mapping function for September 1993-2008 using predictions from the European Center for Medium-Range Weather Forecasts (ECMWF) ensemble converted to a Polar stereographic grid.

Usage

data(pred_maps)

Format

An object of class list of length 4.

References

Copernicus Climate Change Service (2019). Description of the c3s seasonal multi-system.https: //confluence.ecmwf.int/display/COPSRV/Description+of+the+C3S+seasonal+multi-system

Sea Ice Prediction Network (2019). Sea ice prediction network predictability portal. https://atmos.uw.edu/sipn/.

Examples

data(pred_maps)

prob_map

Get probabilities on a grid from contours

Description

Takes in list of polygon objects from merged function and produces a map of probabilities

Usage

 $prob_map(merged, nX = 304, nY = 448)$

merged	list of contours organized as a list of years by a list of samples
nX	dimension in the x (defaults to value for Northern Polar stereographic grid: 304)
nY	dimension in the y (defaults to value for Northern Polar stereographic grid: 448)

prop_area

Value

array of dimension number of years by longitude by latitude that gives the proportion of contours in which the grid box is ice-covered

Examples

Not run: probs <- prob_map(merged)</pre>

prop_area

Proportion of total area by grid box

Description

Matrix of dimension longitude by latitude. Elements give the proportion of the total area (within the seas of the Arctic) in each grid box. The sum of all elements is 1.

Usage

data(prop_area)

Format

array

pt_line_inter Cha

Check if a point crosses a line segment

Description

Check if a point crosses a line segment

Usage

```
pt_line_inter(pt_to_test, fixed_pts)
```

pt_to_test	numeric vector of length two giving the point to test
fixed_pts	matrix of dimension 2 by 2 giving the line segment to test

quick_run

Description

Reads in netCDF files of observations and predictions, performs bias correction, and exports a new netCDF file with bias-corrected predictions

Usage

```
quick_run(obs_NCDF, pred_NCDF, pred_years, start_year, month, output_file,
    level, dat_type_obs = "bootstrap", n_train_years = NULL)
```

Arguments

obs_NCDF	filepath for observed data array (see details for info about array structure)
pred_NCDF	filepath for predicted data array (see details for info about array structure)
pred_years	vectors of years for which to make prediction
start_year	first year to use when learning model
month	month of prediction
output_file	filepath for where bias-corrected netCDF file should be stored
level	concentration level for which to build contour
dat_type_obs	string of either "bootstrap" or "simple" indicating the file type of the observation (see details for info about array structure)
n_train_years	number of prior years used in training bias correction

Details

The predicted data array, pred_NCDF, should be a netCDF file with a single array of dimension: years x longitude (304) x latitude (448). The variable should be named ice_ind. The values in the array should indicate whether each grid box is categorized to contain ice (1: ice-covered, 0: no ice, NA: land). The observed data array, obs_NCDF, should be a netCDF file with a single array of dimension: years x longitude (304) x latitude (448). The observed data array, obs_NCDF, can be formatted the same as pred_NCDF if dat_type_obs = "simple". Alternatively, if dat_type_obs = "bootstrap" the array values can be ice concentration values obtained from the National Aeronautics and Space Administration (NASA) satellites Nimbus-7 SMMR and DMSP SSM/I-SSMIS and processed by the bootstrap algorithm. Data should be retained in the same format as given by bootstrap (including indicators for missing data, land etc.). The variable should be named "conc".

Value

netCDF file of dimension years by longitude (304) by latitude (448) with indicators for where ice is predicted after bias correction. (1: ice-covered, 0: not ice, NA: land). Grid boxes will be categorized as ice if their centers are ice covered (within R the bias-corrected contours are not restricted to align to a grid).

read_bootstrap

References

Comiso, J., 2017: Bootstrap sea ice concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS. version 3. Boulder, Colorado USA: NASA National Snow and Ice Data Center Distributed Active Archive Center

Examples

End(Not run)

read_bootstrap Read individual bootstrap binary file

Description

Read in individual binary files of monthly observation data. The observations are from the monthly sea ice concentration obtained from the National Aeronautics and Space Administration (NASA) satellites Nimbus-7 SMMR and DMSP SSM/I-SSMIS and processed by the bootstrap algorithm. The results are distributed by the National Snow and Ice Data Center (NSIDC) (Comiso 2017). Functions assume file name conventions are the same as used by NSIDC.

Usage

```
read_bootstrap(file_name, nX = 304, nY = 448)
```

Arguments

file_name	file name for binary bootstrap data
nX	dimension in the x (defaults to value for Northern Polar stereographic grid: 304)
nY	dimension in the y (defaults to value for Northern Polar stereographic grid: 448)

Value

numeric vector of concentrations

References

Comiso, J., 2017: Bootstrap sea ice concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS. version 3. Boulder, Colorado USA: NASA National Snow and Ice Data Center Distributed Active Archive Center. doi: https://doi.org/10.5067/7Q8HCCWS4I0R

Examples

```
## Not run:
#fileName should be the binary file
rawData <- read_bootstrap(file_name)</pre>
```

End(Not run)

read_monthly_BS Read in a set of bootstrap observations over a set of year

Description

Function to process monthly bootstrap data over multiple years. The observations are from the monthly sea ice concentration obtained from the National Aeronautics and Space Administration (NASA) satellites Nimbus-7 SMMR and DMSP SSM/I-SSMIS and processed by the bootstrap algorithm. The results distributed by the National Snow and Ice Data Center (NSIDC) (Comiso 2017). Functions assume file name conventions are the same as used by NSIDC.

Usage

```
read_monthly_BS(start_year, end_year, file_folder, version, nX = 304,
    nY = 448)
```

Arguments

start_year	first year to read in
end_year	last year to read in
file_folder	folder in which binary files are stored
version	either 2 or 3 indicating which version of the bootstrap data you are using
nX	longitude dimension
nY	latitude dimension

Details

raw binary files for 2012-2013 are included in the package as an example

Value

bootstrap observations sorted into array of dimension: year x month x lon x lat

References

Bootstrap sea ice concentration: Comiso, J., 2017: Bootstrap sea ice concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS. version 3. Boulder, Colorado USA: NASA National Snow and Ice Data Center Distributed Active Archive Center

46

reg_info

Examples

End(Not run)

reg_info

List of information about each region

Description

A region information list, reg_info, is a list of ten items regions, start_lines, start_lines_coords, start_coords, end_coords, out, lines, dist, loop, and angs. The package contains a reg_info object which is typically what is used for all analyses. However, it would be possible to redefine the regions if desired by making a new reg_info object.

Usage

reg_info

Format

An object of class list of length 10.

Details

regions: list of SpatialPolygons objects corresponding to each region.

start_lines: list of SpatialLines object giving the line from which each mapping or contour generation will start. For the central Arctic region, a single SpatialPoint is used instead. List ordered the same as reg_info\$regions

start_lines_coords: list of matrices giving the coordinates that approximately match reg_info\$start_lines, except that they extend to touch the end point of the first and last fixed line. For the central Arctic region, the coordinate of the start_lineis just repeated. List ordered the same as reg_info\$regions

start_coords: list of matrices giving the coordinates from which the lines start. List ordered the same as reg_info\$regions

end_coords: list of matrices giving the coordinates between the end points of the first and last fixed line. List ordered the same as reg_info\$regions

out: list of SpatialPolygons object that border reg_info\$start_lines, but are outside the region. These are used when building new polygons to determine if points are outside the region of interest. List ordered the same as reg_info\$regions

lines: list giving the SpatialLines objects that correspond to the line on which contours are mapped and built.

dist: list for each region with one item for each line reg_info\$lines giving the lengths at which restrictions on the line lengths occur. The first element for all entries is 0 and the last element is the length of the line. Elements in between refer to the starting and ending lengths on which points cannot be placed. The first list index is ordered the same as reg_info\$regions and the second list index is ordered as the corresponding lines in reg_info\$lines

loop: vector gives a Boolean for each region. The value TRUE indicates that the lines are mapped in a circle around a fixed point. The value FALSE indicates that the lines are mapped along a line on land. The first element, corresponding to the central Arctic region is TRUE. All others are FALSE. Elements ordered the same as reg_info\$regions

angs: list of vectors giving the angles of the corresponding reg_info\$lines. Elements ordered the same as reg_info\$regions

References

The regions in this object have been substantially modified from the following region mask:

National Snow and Ice Data Center, 2017: Region mask for the northern hemisphere http://nsidc.org/data/polar-stereo/tools_masks.html.

Examples

```
data(reg_info)
names(reg_info)
```

rm_holes

Remove holes in a polygon

Description

Remove holes from a SpatialPolygons object. Note that this function differs from the function findHoles in that it only removes holes contained within the polygon itself, not gaps between the polygon and region boundaries

Usage

```
rm_holes(my_poly, poly_name = "notSpecified")
```

Arguments

my_poly	SpatialPolygon object
poly_name	character string to name polygon (defaults to "notSpecified")

Value

SpatialPolygon object with holes removed

RunMCMC

Examples

```
with_holes <- bg_water[2]
plot(with_holes, col = "blue", main = "Polygon with Holes")
no_holes <- rm_holes(with_holes)
plot(no_holes, col = "blue", main = "Holes removed")</pre>
```

```
RunMCMC
```

Run MCMC to Fit Contour Model

Description

Run MCMC to Fit Contour Model

Usage

```
RunMCMC(n_iter, dists, x, xU_vecs, xU_years, xU_prop_sd, xU_lb, xU_ub, mu,
mu0, lambda0, sigma, sigma_ind_1, sigma_ind_2, sigma_prop_cov, rho,
rho0_lb, rho0_ub, rho_prop_sd, sigma0_lb, sigma0_ub, w)
```

n_iter	number of iterations to run the MCMC
dists	symmetric matrix of the same dimension as the number of lines being used, specifying distances among starting locations or angles.
x	a matrix of observed distances (y) of dimension number of vectors by number of years
xU_vecs	vector giving the indices of each x value vector in each year that is not observed (vector indices and year indices are paired, so must be ordered the same as xU_years)
xU_years	vector giving the indices of each year in which each x value vector is not ob- served (vector indices and year indices are paired, so must be ordered the same as xU_vecs)
xU_prop_sd	Standard deviation for proposals for xU
xU_lb	Lower bounds for xU values being sampled (order must match orded of xU_vecs and xU_years)
xU_ub	Upper bounds for xU values being sampled (order must match orded of xU_vecs and xU_years)
mu	vector of the same length as the number of lines which specifies the values from which each element of mu will be initialized in the MCMC.
mu0	vector of the same length as the number of lines which specifies the prior mean for mu.
lambda0	matrix of the same dimension as the number of lines which specifices the prior covariance matrix for mu.

sigma	vector of the same length as the number of lines which specifies the values from which each element in sigma will be initialized from	
sigma_ind_1	vector giving the first index of each section of sigma's to be sampled together	
sigma_ind_2	vector giving the last index of each section of sigma's to be sampled together	
sigma_prop_cov	covariance matrix of the same length as the number of lines that is used in sampling sigma values	
rho	double between 0 and 1 from which the value of rho will be initialized	
rho0_lb	double between 0 and 1 which gives the lower bound of the uniform prior for rho	
rho0_ub	double between 0 and 1 which gives the upper bound of the uniform prior for rho.	
rho_prop_sd	standard deviation for the normal proposal distribution used when proposing value for rho in the sampler. Defaults to 0.01	
sigma0_lb	vector of the same length as the number of lines which specifies the lower bound of the uniform prior for each sigma value	
sigma0_ub	vector of the same length as the number of lines which specifies the upper bound of the uniform prior for each sigma value.	
W	Integer specifying how many samples of the parameters will be maintained. Samples from every wth iteration is stored.	

Value

List of length 7 that gives the values of the MCMC chain for xU, mu, sigma and rho along with indicators of acceptance on each iteration: xURate, sigmaRate, and rhoRate.

sec_to_interp Interpolate a section of line

Description

Interpolate a section of line

Usage

```
sec_to_interp(p1 = NULL, p2 = NULL, bd_r, loop_r = FALSE)
```

p1	vector of length two giving the coordinates of the first point
p2	vector length two giving the coordinates of the second point
bd_r	matrix with two columns giving the fixed line on which to interpolate
loop_r	boolean indicating whether the points are going in a loop

Details

If only p1 is given the point is assumed to be the first in the sequence. If only p2 is given the point is assumed to be the last point in the sequence

sipSep2006_2007 Ensemble sea ice probability for September 2006-2007 (lead time 2.5 months)

Description

The object sipSep2006_2007 is an array of the proportion of ensemble members that have sea ice concentrations of at least 15%. The predictions are are from the European Center for Medium-Range Weather Forecasts (ECMWF) ensemble and converted to a Polar stereographic grid.

Usage

sipSep2006_2007

Format

array of dimension of 2 x 304 x 448 (corresponding to year x longitude x latitude)

References

Comiso, J., 2017: Bootstrap sea ice concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS. version 3. Boulder, Colorado USA: NASA National Snow and Ice Data Center Distributed Active Archive Center. doi: https://doi.org/10.5067/7Q8HCCWS4I0R

Copernicus Climate Change Service (2019). Description of the c3s seasonal multi-system. https://confluence.ecmwf.int/display/COPSRV/Description+of+the+C3S+seasonal+multi-system

Sea Ice Prediction Network (2019). Sea ice prediction network predictability portal. https://atmos.uw.edu/sipn/.

Examples

```
data(sipSep2006_2007)
dim(sipSep2006_2007)
```

sipSep2008

Description

The object sip2006_2007 is an array of the sea ice probability predicted from the European Center for Medium-Range Weather Forecasts (ECMWF) ensemble converted to a Polar stereographic grid.

The object sipSep2008 is an array of the proportion of ensemble members that have sea ice concentrations of at least 15%. The predictions are from the European Centerfor Medium-Range Weather Forecasts (ECMWF) ensemble converted to the Polar stereographic grid.

Usage

sipSep2008

sipSep2008

Format

matrix of dimension 304 x 448 (longitude x latitude)

References

Copernicus Climate Change Service (2019). Description of the c3s seasonal multi-system. https: //confluence.ecmwf.int/display/COPSRV/Description+of+the+C3S+seasonal+multi-system

Sea Ice Prediction Network (2019). Sea ice prediction network predictability portal. https://atmos.uw.edu/sipn/.#' @examples data(sipSep2008) dim(sipSep2008)

Copernicus Climate Change Service (2019). Description of the c3s seasonal multi-system.https: //confluence.ecmwf.int/display/COPSRV/Description+of+the+C3S+seasonal+multi-system

Sea Ice Prediction Network (2019). Sea ice prediction network predictability portal. https://atmos.uw.edu/sipn/.

spatialCollEx Spatial collection example

Description

Example of a SpatialCollections object that contains a SpatialPolygons object and a SpatialLines object

Usage

spatialCollEx

to_fit

Format

SpatialCollections object

Examples

```
data(SpatialCollEx)
plot(spatialCollEx)
plot(spatialCollEx@lineobj, col = "red", add = TRUE)
plot(spatialCollEx@polyobj, col = "blue", add = TRUE)
```

to_fit

Identify fully ice-covered and ice-free regions

Description

Determine which regions are completely ice-filled (full) or ice-free (empty) in all years in the training period. Also, make the polygon corresponding to regions that are fully ice-covered.

Usage

to_fit(y_obs, reg_info)

Arguments

y_obs	list of y values outputted from y_obs function
reg_info	a reg_info list (see documentation for reg_info)

```
train_ind
```

Find indices on which to train contour model

Description

Identify the years on which to train accounting for years with missing data

Usage

```
train_ind(maps)
```

Arguments

maps

output of a create_mapping object

ts_adj_mu

Description

Trend Adjustment For mu

Usage

```
ts_adj_mu(obs_list, forecast_year, train_start_year, train_end_year)
```

Arguments

obs_list	partial output of get_map function, maps\$obs_list[[r]], where r is the re- gion of interest	
forecast_year	year to be forecast	
train_start_yea	ir	
	first year in training period	
train_end_year	last year in training period	

Value

vector of the length of the number of lines in the mapping that represent by what factor each estimated mu should be adjusted

untwist

Remove self-intersections

Description

Function to remove all self-intersections from a contour.

Usage

```
untwist(my_poly, plotting = FALSE, poly_name = "unspecified",
min_area = 12.5)
```

my_poly	SpatialPolygons object from which self-intersections need to be removed
plotting	boolean indicating if results should be plotted
poly_name	name for SpatialPolygons object to return (defaults to "unspecified")
min_area	minimum area for any individual polygon

untwist_sec

Value

SpatialPolygons object with self-intersections removed

Examples

```
## Not run:
par(mfrow = c(1, 2))
plot(interEx, main = "Original Contour")
noInter <- untwist(interEx, poly_name = "interEx")
plot(noInter, main = "Final Contour")
```

```
## End(Not run)
```

untwist_sec Remove self-intersections from one section of a contour

Description

Function to correct self-intersections in a section of a line.

Usage

untwist_sec(line, tol = 0, eps = 0.25)

Arguments

line	N x 2 matrix of coordinates
tol	how much of a difference between the original line and the simplified line is allowed
eps	how much to increase tol by on each iteration

Value

n x 2 matrix of the new coordinates with self-intersections removed

Examples

```
par(mfrow = c(1, 2))
plot(currSecEx, type = "1", main = "Original Line Section", xlab = "", ylab = "")
new_sec <- untwist_sec(currSecEx)
plot(new_sec, type = "1", main = "New Line Section", xlab = "", ylab = "")</pre>
```

wght_mod

Description

Function to weight two models

Usage

wght_mod(w, mod1, mod2)

Arguments

W	weight on model 1
mod1	array with estimated sea ice probability from model 1. Dimensions are number of training years x lon x lat.
mod2	array with estimated sea ice probability from model 1. Dimensions are number of training years x lon x lat.

Examples

```
## Not run:
weight <- fit_weights(mod1 = clim_9_2005_2007, mod2 = ppe_9_2005_2007,
obs = obs_9_2005_2007, prop_area = prop_area)
wght_mod(w = weight, mod1 = clim_9_2008, mod2 = ppe_9_2008)
```

End(Not run)

y_obs

Compute y

Description

Compute y values from the output of the create_mapping object

Usage

y_obs(maps, reg_info)

maps	output of the create_mapping function
reg_info	a reg_info list (see documentation for reg_info)

y_{obs}

Value

List of matrices, one per region, giving the observed y values. Each row corresponds to the lines in L and each column corresponds to a training year

Examples

y_obs <- y_obs(maps = obs_maps, reg_info)</pre>

Index

*Topic data(sipSep2008) sipSep2008, 52 *Topic datasets all_regions, 3 bg_water, 4 clim_9_2005_2007,8 clim_9_2008, 8 currSecEx, 14 discrep, 14 ecmwf_bin, 16 full, 20 interEx, 28 land, 31 land_mat, 32 map_curr_1, 35 mappedPoints, 33 merged, 35 obs_9_2005_2007, 38 obs_9_2008, 39 obs_maps, 39 obsLEx, 36 obsSep2006_2007, 37 obsSep2008, 37 pars_1, 40 ppe_9_2005_2007, 40 ppe_9_2008, 41 pred_maps, 42 predLEx, 41 prop_area, 43 reg_info, 47 sipSep2006_2007, 51 sipSep2008, 52 spatialCollEx, 52 *Topic **dim**(**sipSep2008**) sipSep2008, 52 all_regions, 3 any_intersect, 4 bg_water,4

bound_info, 5

calc_pars, 6 censor, 6 check_intersect, 7 clim_9_2005_2007,8 clim_9_2008, 8 cond_prob, 9 contig_zero, 9 contour_shift, 10 conv_to_grid, 11 create_mapping, 12 currSecEx, 14 discrep, 14 dist_mat, 15 ecmwf_bin, 16 extract_coords, 16 find_trans, 17 fit_cont_pars, 17 fit_weights, 19 full, 20 gen_cont, 21 get_area, 22 $\texttt{get_coords, 23}$ get_dist, 23 get_ind, 24 get_init_month, 24 get_map, 25 get_region, 26 indiv_poly, 27 int_line, 29 inter_start_line, 29 interEx, 28 interp_new_pts, 28

 ${\tt keep_line, 30}$

INDEX

keep_poly, 30 land, 31 land_mat, 32 make_polygons, 32 map_curr_1, 35 mappedPoints, 33 mapxy, 34 $\texttt{merge_conts}, 36$ merged, 35obs_9_2005_2007, 38 obs_9_2008, 39 obs_maps, 39 obsLEx, 36 obsSep2006_2007, 37 obsSep2008, 37 pars_1, 40 ppe_9_2005_2007, 40 ppe_9_2008, 41 pred_maps, 42 predLEx, 41 prob_map, 42 prop_area, 43 pt_line_inter, 43 quick_run, 44 read_bootstrap, 45 read_monthly_BS, 46 reg_info, 47 rm_holes, 48 RunMCMC, 49 sec_to_interp, 50 sipSep2006_2007, 51 sipSep2008, 52 spatialCollEx, 52 to_fit, 53 train_ind, 53 ts_adj_mu, 54 untwist, 54 untwist_sec, 55 wght_mod, 56 y_obs, 56