Package ‘glme’

January 25, 2021

Type Package
Title Generalized Linear Mixed Effects Models
Version 0.1.0
Author Sam Weerahandi [aut], Berna Yazici [aut], Ching-Ray Yu [aut], Mustafa Cavus [aut, cre]
Maintainer Mustafa Cavus <mustafacavus@eskisehir.edu.tr>
Description Provides Generalized Inferences based on exact distributions and exact probability statements for mixed effect models, provided by such papers as Weerahandi and Yu (2020) <doi:10.1186/s40488-020-00105-w> under the widely used Compound Symmetric Covariance structure. The package returns the estimation of the coefficients in random and fixed part of the mixed models by generalized inference.
License GPL (>= 2)
Encoding UTF-8
LazyData true
Imports nlme, reshape, dplyr, stats
NeedsCompilation no
Repository CRAN
Date/Publication 2021-01-25 08:20:13 UTC

R topics documented:

 glme .. 2

Index 4
glme

Generalized Linear Mixed Effects Models

Description

This function fits a linear mixed effect model with generalized inference.

Usage

```r
glme(fixed, data, random, correlation, weights, subset, method, na.action, control, contrasts, keep.data)
```

Arguments

- `fixed` a linear model formula, with the response on the left of a operator and an expression involving parameters and covariates on the right.
- `data` an optional data frame containing the variables named in model, fixed, random, correlation, weights, subset, and naPattern. By default the variables are taken from the environment from which glme is called.
- `random` a two-sided linear formula of the form $f_1 + \ldots + f_n \sim x_1 + \ldots + x_m$, or a list of two-sided formulas of the form $f_1 \sim x_1 + \ldots + x_m$, with possibly different models for different parameters. The f_1, \ldots, f_n are the names of parameters included on the right hand side of model and the $x_1 + \ldots + x_m$ expressions define linear models for these parameters. On the right hand side of the formula(s) indicates a single fixed effects for the corresponding parameter(s).
- `correlation` an optional corStruct object describing the within-group correlation structure.
- `weights` an optional varFunc object or one-sided formula describing the within-group heteroscedasticity structure.
- `subset` an optional expression indicating the subset of the rows of data that should be used in the fit. This can be a logical vector, or a numeric vector indicating which observation numbers are to be included, or a character vector of the row names to be included. All observations are included by default.
- `method` a character string. If "GM" the model is fit by generalized inference. If "REML" the model is fit by maximizing the restricted log-likelihood. If "ML" the log-likelihood is maximized. Defaults to "GM".
- `na.action` a function that indicates what should happen when the data contain NAs.
- `control` a list of control values for the estimation algorithm to replace the default values returned.
- `contrasts` an optional list. See the contrasts.arg of model.matrix.default.
- `keep.data` logical: should the data argument (if supplied and a data frame) be saved as part of the model object.
Value

fixed returns the coefficient estimations and model summary of the fixed part.

sd returns the standard deviation of random effects.

coefficients returns the coefficient estimations of the fixed and random part of the mixed model.

Author(s)

Sam Weerahandi, Berna Yazici, Ching-Ray Yu, Mustafa Cavus

References

Examples

library(nlme)
library(glme)

Example using the Orthodont dataset
glme(distance ~ age + Sex, data = Orthodont, random = ~ age|Subject, method = "GM")
Index

glme, 2